Planar nonautonomous polynomial equations V. The Abel equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Nonautonomous Polynomial Equations Iv . Nonholomorphic Case

We give a few sufficient conditions for the existence of periodic solutions of the equation ż = Pn j=0 aj(t)z j − Pr k=1 ck(t)z k where n > r and aj ’s, ck’s are complex valued. We prove the existence of one up to two periodic solutions.

متن کامل

Chaos in some planar nonautonomous polynomial differential equation

We show that under some assumptions on the function f the system ż = z(f(z)e + ei2φt) generates chaotic dynamics for sufficiently small parameter φ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.

متن کامل

The Abel-Type Polynomial Identities

The Abel identity is (x + y) = n ∑ i=0 ( n i ) x(x − iz)i−1(y + iz)n−i, where x, y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata’s method, and also show some of their applications.

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Solving Polynomial Equations with Equation Constraints: the Zero-dimensional Case

A zero-dimensional polynomial ideal may have a lot of complex zeros. But sometimes, only some of them are needed. In this paper, for a zero-dimensional ideal I , we study its complex zeros that locate in another variety V(J) where J is an arbitrary ideal. The main problem is that for a point in V(I) ∩ V(J) = V(I + J), its multiplicities w.r.t. I and I + J may be different. Therefore, we cannot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2013

ISSN: 1232-9274

DOI: 10.7494/opmath.2013.33.1.175